Solutions to Problem 1.

- State space. $\mathcal{M}=\{1,2,3,4\}$.

State 1 corresponds to station A, state 2 corresponds to station B, state 3 corresponds to station C, and state 4 corresponds to station D.

- Time step. Each time step corresponds to one trip.
- Transition probabilities.

$$
\mathbf{P}=\left[\begin{array}{cccc}
0 & 1 / 2 & 1 / 2 & 0 \\
1 / 3 & 0 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 0 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 & 0
\end{array}\right]
$$

- Initial state probabilities. $q_{1}=q_{2}=q_{3}=q_{4}=1 / 4$.

Solutions to Problem 2.

- State space. $\mathcal{M}=\{1,2,3,4,5\}$. State 1 corresponds to the customer inserting a card, state 2 corresponds to a withdrawal, state 3 corresponds to a deposit, state 4 corresponds to obtaining information, and state 5 corresponds to completing business.
- Time step. Each time step corresponds to one transaction.
- Transition probabilities.

$$
\mathbf{P}=\left[\begin{array}{ccccc}
0 & 0.5 & 0.4 & 0.1 & 0 \\
0 & 0 & 0.05 & 0.05 & 0.9 \\
0 & 0.05 & 0 & 0.05 & 0.9 \\
0 & 0.05 & 0.05 & 0 & 0.9 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

- Initial state probabilities. $q_{1}=1, q_{2}=q_{3}=q_{4}=q_{5}=0$

Solutions to Problem 3.

- State space. $\mathcal{M}=\{0,1,2\}$. Each state corresponds to the number of working computers at the beginning of the day.
- Time step. Each time step corresponds to one day (from the beginning of one day to the beginning of the next day).
- Transition probabilities.

For state 1 , note that if 1 computer is working, then 1 computer is being repaired and will return the next day.

- Initial state probabilities. $q_{0}=0, q_{1}=0, q_{2}=1$.

